
yarp Documentation
Release 0.4.0

Jonathan Heathcote

Dec 24, 2018

Contents:

1 Introduction 3

2 Creating impure Values 7

3 yarp API 11
3.1 Value type . 11
3.2 Aggregate Values . 12
3.3 Value casting . 13
3.4 Value Operators . 13
3.5 Python builtins . 15
3.6 Function wrappers . 15
3.7 General Value manipulation . 16
3.8 Temporal Value manipulation . 17
3.9 File-backed Values . 17
3.10 Time Values . 18

Python Module Index 19

i

ii

yarp Documentation, Release 0.4.0

This library facilitates a programming style which is a little bit like (functional-ish) reactive programming.

Contents: 1

https://en.wikipedia.org/wiki/Functional_reactive_programming

yarp Documentation, Release 0.4.0

2 Contents:

CHAPTER 1

Introduction

This programming style will be familiar to anyone who has used a spreadsheet. In a spreadsheet you can put values
into cells. You can also put functions into cells which compute new values based on the values in other cells. The
neat feature of spreadsheets is that if you change the value in a cell, any other cell whose value depends on it is
automatically recomputed.

Using yarp you can define Values, and functions acting on those values, which are automatically reevaluated when
changed. For example:

>>> from yarp import Value, fn

>>> # Lets define two Values which for the moment will just be '1'
>>> a = Value(1)
>>> b = Value(1)

>>> # Lets define a function 'add' which adds two numbers together. The
>>> # @fn decorator automatically wraps 'add' so that it takes Value
>>> # objects as arguments and returns a Value object. Your definition,
>>> # however, is written just like you'd write any normal function:
>>> # accepting and returning regular Python types in boring every-day
>>> # ways.
>>> @fn
... def add(a, b):
... return a + b

>>> # Calling 'add' on our 'a' and 'b' Value objects returns a new Value
>>> # object with the result. Get the actual value using the 'value'
>>> # property.
>>> a_plus_b = add(a, b)
>>> a_plus_b.value
2

>>> # Changing one of the input values will cause 'add' to automatically be
>>> # reevaluated.
>>> a.value = 5

(continues on next page)

3

yarp Documentation, Release 0.4.0

(continued from previous page)

>>> a_plus_b.value
6
>>> b.value = 10
>>> a_plus_b.value
15

>>> # Accessing attributes of a Value returns a Value-wrapped version of
>>> # that attribute, e.g.
>>> c = Value(complex(1, 2))
>>> r = c.real
>>> r.value
1
>>> i = c.imag
>>> i.value
2
>>> c.value = complex(10, 100)
>>> r.value
10
>>> i.value
100

>>> # You can also call (side-effect free) methods of Values to get a
>>> # Value-wrapped version of the result which updates when the Value
>>> # change:
>>> c2 = c.conjugate()
>>> c2.value
(10-100j)
>>> c.value = complex(123, 321)
>>> c2.value
(123-321)

As well as representing continuous values which change at defined points in time yarp can also represent values
which are defined only instantaneously, for example an ephemeral sensor reading. For example:

>>> from yarp import Value, instantaneous_fn

>>> # Lets create an instantaneous value which occurs whenever a car drives
>>> # past a speed check. At the moment of measurement, the value has the
>>> # instantaneous value of the car's speed in MPH. For now, though, it
>>> # has no value.
>>> car_speed_mph = Value()

>>> # We live in a civilised world so lets convert that into KM/H. This
>>> # 'instantaneous_fn' decorator works just like the 'fn' one but returns
>>> # instantaneous values.
>>> @instantaneous_fn
... def mph_to_kph(mph):
... return mph * 1.6

>>> car_speed_kph = mph_to_kph(car_speed_mph)

>>> # Lets setup a callback to print a car's speed whenever it is measured
>>> def on_car_measured(speed_kph):
... print("A car passed at {} KM/H".format(speed_kph))
>>> car_speed_kph.on_value_changed(on_car_measured)
<function ...>

(continues on next page)

4 Chapter 1. Introduction

yarp Documentation, Release 0.4.0

(continued from previous page)

>>> # Now lets instantaneously set the value as if a car has just gone past
>>> # and watch as our callback is called with the speed in KM/H
>>> car_speed_mph.set_instantaneous_value(30)
A car passed at 48.0 KM/H

As in these examples, the intention is that most yarp-using code will be based entirely on passing Values around
between functions wrapped with fn() and instantaneous_fn().

5

yarp Documentation, Release 0.4.0

6 Chapter 1. Introduction

CHAPTER 2

Creating impure Values

In general, yarp Values are intended to be passed between simple, pure functions wrapped by the fn() decorator.
Specifically, these functions don’t hold any state and the resulting Values change when-and-only-when any input
Value changes. This type of function is very easy to write and reason about with yarp but is fundamentally con-
strained. For example, it is not possible to implement delay() using such a function since input :py;class:Value
changes do not immediately result in the Value changing. Simillarly, the no_repeat() function also cannot be
replicated since it doesn’t always change its output Value when its input changes.

To get around this limitation it is necessary to manipulate Values ‘by hand’. Lets begin by seeing how
no_repeat() is implemented.

The following pseudo code implementation goes the ‘obvious’ implementation for a no-repeat value:

on source value changed:
if source value != last source value:

output value = source value
last source value = source value

The actual Python implementation looks like:

>>> def no_repeat(source_value):
... last_value = source_value.value
...
... # Initially take on the source value
... output_value = Value(last_value)
...
... @source_value.on_value_changed
... def on_source_value_changed(new_value):
... nonlocal last_value
... if new_value != last_value:
... last_value = new_value
... # Copy to output whether continuous or instantaneous
... output_value._value = source_value.value
... output_value.set_instantaneous_value(new_value)
...
... return output_value

7

https://en.wikipedia.org/wiki/Pure_function

yarp Documentation, Release 0.4.0

In this example we create function (or rather, a closure) called on_source_value_changed and set it as the
callback for the source Value using Value.on_value_changed().

Note: This example uses the Python decorator syntax making the code read a little more naturally, as in the pseudo-
code version.

The last_value variable is accessed from the enclosing scope is used to keep track of the last value received from
the source. The nonlocal keyword is used to gain access to it from our callback.

The last detail is the way the output Value is updated. If source_value is a continuous function we could update
the output using either:

output_value.value = new_value

Or:

output_value.value = source_value.value

However, if source_value is an instantaneous value, we’d need to do use Value.
set_instantaneous_value():

output_value.set_instantaneous_value(new_value)

Since we’d like to make our output Value mimic the input regardless of whether it is continuous or instantaneous,
instead we use the following two-step process:

output_value._value = source_value.value
output_value.set_instantaneous_value(new_value)

By setting _value we change Value.value without triggering any callbacks registered with Value.
on_value_changed(). We set this to the continuous value of the source (which is :py:data‘NoValue‘ if the
source is instantaneous). By calling Value.set_instantaneous_value() with the just-received value from
the source we cause the callback to occur in the output Value.

You can try it out, first lets try a continuous value:

>>> # Create a value to de-repeat
>>> v = Value(123)
>>> nrv = no_repeat(v)
>>> nrv.on_value_changed(print)
<built-in function print>

>>> # Repeated values should not pass through
>>> v.value = 321
321
>>> v.value = 321
>>> v.value = 321
>>> v.value = 123
123

Next lets try an instantaneous value:

>>> # Create another instantaneous value to de-repeat
>>> iv = Value()
>>> nriv = no_repeat(iv)
>>> nriv.on_value_changed(print)

(continues on next page)

8 Chapter 2. Creating impure Values

https://www.python.org/dev/peps/pep-0318/
https://docs.python.org/3/reference/simple_stmts.html#nonlocal

yarp Documentation, Release 0.4.0

(continued from previous page)

<built-in function print>

>>> nriv.value is NoValue
True

>>> iv.set_instantaneous_value(123)
123
>>> nriv.value is NoValue
True

>>> iv.set_instantaneous_value(123)
>>> nriv.value is NoValue
True

>>> iv.set_instantaneous_value(321)
321
>>> nriv.value is NoValue
True

9

yarp Documentation, Release 0.4.0

10 Chapter 2. Creating impure Values

CHAPTER 3

yarp API

3.1 Value type

At the core of the yarp API is the Value type. This type is defined below.

yarp.NoValue = NoValue
A special value indicating that a yarp value has not been assigned a value.

class yarp.Value(initial_value=NoValue)
A continuous or instantaneous value which can be read and set.

This base class defines the fundamental type in yarp: the ‘value’.

The actual data contained by this object should be regarded as immutable with changes being made by replacing
the Python object with a new one to affect changes.

value
A property holding the current continuous value held by this object. If not yet set, or if this object represents
only instantaneous values, this will be NoValue.

Setting this property sets the (continuous) contents of this value (raising the on_value_changed()
callback afterwards).

To set the instantaneous value, see set_instantaneous_value().

To change the value without raising a callback, set the _value attribute directly. This may be useful
if you wish to make this Value mimic another by, in a callback function, setting _value in this Value
directly from the other Value’s value and calling set_instantaneous_value() with the passed
variable explicitly. You must always be sure to call set_instantaneous_value() after changing
_value.

set_instantaneous_value(new_value)
Set the instantaneous value of this Value, calling the on_value_changed callbacks with the passed value
but not storing it in the value property (which will remain unchanged).

on_value_changed(cb)
Registers callback as a callback function to be called when this value changes.

11

yarp Documentation, Release 0.4.0

The callback function will be called with a single argument: the value now held by this object. If the value
is continuous, the value given as the argument will match the Value.value property. Otherwise, if this
value is instantaneous, the value will not be reflected in the Value.value property.

Note: There is no way to remove callbacks. For the moment this is an intentional restriction: if this causes
you difficulties this is a good sign what you’re doing is ‘serious’ enough that yarp is not for you.

This function returns the callback passed to it making it possible to use it as a decorator if desired.

3.2 Aggregate Values

The yarp API provides a limited set of convenience functions which which turn certain native Python data structures
into Values which update whenever the underlying Values do.

yarp.value_list(list_of_values)
Returns a Value consisting of a fixed list of other Values. The returned Value will change whenever one
of its members does.

Parameters

list_of_values: [:py:class:‘Value‘, . . .] A fixed list of Values. The value of this object will
be an array of the underlying values. Callbacks will be raised whenever a value in the list
changes.

It is not possible to modify the list or set the contained values directly from this object.

For instantaneous list members, the instantaneous value will be present in the version of this
list passed to registered callbacks but otherwise not retained. (Typically the instantaneous
values will be represented by NoValue in value or in callbacks resulting from other
Values changing.

yarp.value_tuple(tuple_of_values)
A Value consisting of a tuple of other Values.

Parameters

tuple_of_values: (:py:class:‘Value‘, . . .) A fixed tuple of Values. The value of this object
will be a tuple of the underlying values. Callbacks will be raised whenever a value in the
tuple changes.

It is not possible to modify the tuple or set the contained values directly from this object.

For instantaneous tuple members, the instantaneous value will be present in the version of
this tuple passed to registered callbacks but otherwise not retained. (Typically the instan-
taneous values will be represented by NoValue in value or in callbacks resulting from
other Values changing.

yarp.value_dict(dict_of_values)
A Value consisting of a dictionary where the values (but not keys) are Values.

Parameters

dict_of_values: {key: :py:class:‘Value‘, . . . } A fixed dictionary of Values. The value of
this object will be a dictionary of the underlying values. Callbacks will be raised whenever
a value in the dictionary changes.

It is not possible to modify the set of keys in the dictionary nor directly change the values of
its elements from this object.

12 Chapter 3. yarp API

yarp Documentation, Release 0.4.0

For instantaneous dictionary members, the instantaneous value will be present in the version
of this dict passed to registered callbacks but otherwise not retained. (Typically the instan-
taneous values will be represented by NoValue in value or in callbacks resulting from
other Values changing.

3.3 Value casting

The following low-level funcitons are provided for creating and casting Value objects.

yarp.ensure_value(value)
Ensure a variable is a Value object, wrapping it accordingly if not.

• If already a Value, returns unmodified.

• If a list, tuple or dict, applies ensure_value() to all contained values and returns a value_list,
value_tuple or value_dict respectively.

• If any other type, wraps the variable in a continous Value with the initial value set to the defined value.

yarp.make_instantaneous(source_value)
Make a persistent :py:class‘Value‘ into an instantaneous one which ‘fires’ whenever the persistant value is
changed.

yarp.make_persistent(source_value, initial_value=NoValue)
Make an instantaneous Value into a persistant one, keeping the old value between changes. Initially sets the
Value to initial_value.

3.4 Value Operators

The Value class also supports many (but not all) of the native Python operations, producing corresponding (contin-
uous) Value objects as results. These operations support the mixing of Value objects and other suitable Python
objects. The following operators are supported:

• Arithmetic

– a + b

– a - b

– a * b

– a @ b

– a / b

– a // b

– a % b

– divmod(a, b)

– a ** b

• Bit-wise

– a << b

– a >> b

– a & b

3.3. Value casting 13

yarp Documentation, Release 0.4.0

– a | b

– a ^ b

• Unary

– -a

– +a

– abs(a)

– ~a

• Comparison

– a < b

– a <= b

– a == b

– a != b

– a >= b

– a > b

• Container operators

– a[key]

• Numerical conversions

– complex(a)

– int(a)

– float(a)

– round(a)

• Python object/function usage

– a(...) will call the value as a function and return a Value containing the result. This value will
be updated by re-calling the function whenever the Value changes. Like fn(), arguments may be
Value objects and these will be unwrapped before the function is called and will also cause the
function to be re-evaluated whenever they change. Do not use this to call functions with side effects.

– a.name equivalent to yarp.getattr(a, "name")

Unfortunately this list doesn’t include boolean operators (i.e. not, and, or and bool). This is due to a limitation
of the Python data model which means that bool may only return an actual boolean value, not some other type of
object. As a workaround you can substitute:

• bool(a) for a == True (works in most cases)

• a and b for a & b (works for boolean values but produces numbers)

• a or b for a | b (works for boolean values but produces numbers)

For a similar reasons, the len and in operators are also not supported.

This list also doesn’t include mutating operators, for example a[key] = b. This is because the Python objects
within a Value are treated as being immutable.

Finally, to reiterate, the result of these operators will always be continuous Values. For instantaneous versions of
these operators, see the Python builtins section below.

14 Chapter 3. yarp API

yarp Documentation, Release 0.4.0

3.5 Python builtins

The yarp API provides Value-compatible versions of a number of Python builtins and functions from the standard
library:

• Builtins

– bool(a)

– any(a)

– all(a)

– min(a)

– max(a)

– sum(a)

– map(a)

– sorted(a)

– str(a)

– repr(a)

– str_format(a, ...) (equivalent to a.format(...))

– oct(a)

– hex(a)

– zip(a)

– len(a)

– getattr(object, name[, default])

• Most non-mutating, non-underscore prefixed functions from the operator module.

These wrappers produce continuous Values. Corresponding versions prefixed with instantaneous_ are provided
which produce instantaneous Values.

3.6 Function wrappers

The primary mode of interaction with yarp Values is intended to be via simple Python functions wrapped with
fn() or instantaneous_fn(). These wrappers are defined below.

yarp.fn(f)
Decorator. Wraps a function so that it may be called with Value objects and itself return a persistent Value.

Say a function is defined and wrapped with fn() like so:

>>> @yarp.fn
... def add(a, b):
... return a + b

The function can now be called with Value objects like so:

>>> a = yarp.Value(1)
>>> b = yarp.Value(2)
>>> c = add(a, b)

3.5. Python builtins 15

https://docs.python.org/3/library/operator.html#module-operator

yarp Documentation, Release 0.4.0

The returned value will itself be a Value object which will be updated whenever any of the arguments change.

>>> c.value
3

The wrapped function doesn’t need to know anything about Value objects: the wrapper unpacks the Values
of each argument before passing it on and automatically wrapps the return value in a Value. (Non-Value
arguments passed to the function are automatically passed through without modification).

The wrapped function is called once immediately when it is called and then again as required when its arguments
change. The output Value will be persistent.

See also: instantaneous_fn().

yarp.instantaneous_fn(f)
Decorator. Like fn() but the function output will be wrapped as an instantaneous Value.

The only other difference is that the function will not be called immediately and instead will only be called later
when its inputs change.

3.7 General Value manipulation

The following utility functions are defined which accept and return Values.

yarp.replace_novalue(source_value, replacement_if_novalue=None)
If the source_value is NoValue, return replacement_if_novalue instead.

Parameters

source_value [Value] An instantaneous or continuous Value.

replacement_if_novalue [Python object or Value] Replacement value to use if
source_value has the value NoValue.

Returns

A continuous :py:class:‘Value‘ which will be a copy of ‘‘source_value‘‘ if

‘‘source_value‘‘ is not :py:data:‘NoValue‘, otherwise the value of

‘‘replacement_if_novalue‘‘ is used instead.

yarp.window(source_value, num_values)
Produce a moving window over a Value’s historical values.

This function treats the Value it is passed as a persistent Value, even if it is instantaneous (since a window
function doesn’t really have any meaning for a instantaneous values).

The num_values argument may be a (persistent) Value or a constant indicating the number of entries in the
window. If this value later reduced, the contents of the window will be truncated immediately. If it is increaesd,
any previously dropped values will not return. num_values is always assumed to be an integer greater than
zero and never NoValue.

yarp.no_repeat(source_value)
Don’t pass on change callbacks if the Value hasn’t changed.

Works for both continuous and instantaneous Values.

yarp.filter(source_value, rule=NoValue)
Filter change events.

16 Chapter 3. yarp API

yarp Documentation, Release 0.4.0

The filter rule should be a function which takes the new value as an argument and returns a boolean indicating
if the value should be passed on or not.

If the source value is persistent, the persistent value will remain unchanged when a value change is not passed
on.

If the filter rule is None, non-truthy values and NoValue will be filtered out. If the filter rule is NoValue (the
default) only NoValue will be filtered out.

3.8 Temporal Value manipulation

The following utility functions are defined which accept and return Values but may delay or filter changes. These all
use asyncio internally and require that a asyncio.BaseEventLoop be running.

yarp.delay(source_value, delay_seconds, loop=None)
Produce a time-delayed version of a Value.

Supports both instantaneous and continous Values. For continuous Values, the initial value is set immedi-
ately.

The delay_seconds argument may be a constant or a Value giving the number of seconds to delay value
changes. If it is increased, previously delayed values will be delayed further. If it is decreased, values which
should already have been output will be output rapidly one after another.

The loop argument should be an asyncio.BaseEventLoop in which the delays will be scheduled. If
None, the default loop is used.

yarp.time_window(source_value, duration, loop=None)
Produce a moving window over a Value’s historical values within a given time period.

This function treats the Value it is passed as a persistent Value, even if it is instantaneous (since a window
function doesn’t really have any meaning for an instantaneous value).

The duration may be a constant or a (persistent) Value giving the window duration as a number of seconds.
The duration should be a number of seconds greater than zero and never be NoValue. If the value is reduced,
previously inserted values will be expired earlier, possibly immediately if they should already have expired. If
the value is increased, previously inserted values will have an increased timeout.

The loop argument should be an asyncio.BaseEventLoop in which windowing will be scheduled. If
None, the default loop is used.

yarp.rate_limit(source_value, min_interval=0.1, loop=None)
Prevent changes occurring above a particular rate, dropping or postponing changes if necessary.

The min_interval argument may be a constant or a Value. If this value is decreased, currently delayed
values will be output early (or immediately if the value would have been output previously). If increased, the
current delay will be increased.

The loop argument should be an asyncio.BaseEventLoop in which the delays will be scheduled. If
None, the default loop is used.

3.9 File-backed Values

The following function can be used to make very persistent Values

yarp.file_backed_value(filename, initial_value=NoValue)
A persistent, file-backed value.

3.8. Temporal Value manipulation 17

https://docs.python.org/3/library/asyncio.html#module-asyncio

yarp Documentation, Release 0.4.0

Upon creation, the value will be loaded from the specified filename. Whenever the value is changed it will be
rewritten to disk. Changes made to the file while your program is running will be ignored.

If the file does not exist, it will be created and the value set to the value given by initial_value.

The value must be pickleable.

3.10 Time Values

The following function can be used to get the (continously changing) date and time:

yarp.now(interval=1.0, tz=None, loop=None)
Returns a continuous Value containing a datetime.datetime object holding the current time, refreshed
every interval seconds.

The interval argument may be a constant or a Value giving the number of seconds to wait between updates.
If the Value changes, the time until the next update will be reset starting from that moment in time.

The tz argument is passed on to datetime.datetime.now(). This must be a constant.

The loop argument should be an asyncio.BaseEventLoop in which the delays will be scheduled. If
None, the default loop is used.

18 Chapter 3. yarp API

https://docs.python.org/3/library/datetime.html#datetime.datetime

Python Module Index

y
yarp, 1

19

yarp Documentation, Release 0.4.0

20 Python Module Index

Index

D
delay() (in module yarp), 17

E
ensure_value() (in module yarp), 13

F
file_backed_value() (in module yarp), 17
filter() (in module yarp), 16
fn() (in module yarp), 15

I
instantaneous_fn() (in module yarp), 16

M
make_instantaneous() (in module yarp), 13
make_persistent() (in module yarp), 13

N
no_repeat() (in module yarp), 16
NoValue (in module yarp), 11
now() (in module yarp), 18

O
on_value_changed() (yarp.Value method), 11

R
rate_limit() (in module yarp), 17
replace_novalue() (in module yarp), 16

S
set_instantaneous_value() (yarp.Value method), 11

T
time_window() (in module yarp), 17

V
Value (class in yarp), 11

value (yarp.Value attribute), 11
value_dict() (in module yarp), 12
value_list() (in module yarp), 12
value_tuple() (in module yarp), 12

W
window() (in module yarp), 16

Y
yarp (module), 1, 5, 9

21

	Introduction
	Creating impure Values
	yarp API
	Value type
	Aggregate Values
	Value casting
	Value Operators
	Python builtins
	Function wrappers
	General Value manipulation
	Temporal Value manipulation
	File-backed Values
	Time Values

	Python Module Index

