

yarp: Yet Another Reactive(-ish) Programming library for Python

This library facilitates a programming style which is a little bit like
(functional-ish) reactive programming [https://en.wikipedia.org/wiki/Functional_reactive_programming].

Contents:

	Introduction

	Creating impure Values

	yarp API
	Value type

	Aggregate Values

	Value casting

	Value Operators

	Python builtins

	Function wrappers

	General Value manipulation

	Temporal Value manipulation

	File-backed Values

	Time Values

Introduction

This programming style will be familiar to anyone who has used a spreadsheet.
In a spreadsheet you can put values into cells. You can also put functions into
cells which compute new values based on the values in other cells. The neat
feature of spreadsheets is that if you change the value in a cell, any other
cell whose value depends on it is automatically recomputed.

Using yarp you can define Values, and functions acting on
those values, which are automatically reevaluated when changed. For example:

>>> from yarp import Value, fn

>>> # Lets define two Values which for the moment will just be '1'
>>> a = Value(1)
>>> b = Value(1)

>>> # Lets define a function 'add' which adds two numbers together. The
>>> # @fn decorator automatically wraps 'add' so that it takes Value
>>> # objects as arguments and returns a Value object. Your definition,
>>> # however, is written just like you'd write any normal function:
>>> # accepting and returning regular Python types in boring every-day
>>> # ways.
>>> @fn
... def add(a, b):
... return a + b

>>> # Calling 'add' on our 'a' and 'b' Value objects returns a new Value
>>> # object with the result. Get the actual value using the 'value'
>>> # property.
>>> a_plus_b = add(a, b)
>>> a_plus_b.value
2

>>> # Changing one of the input values will cause 'add' to automatically be
>>> # reevaluated.
>>> a.value = 5
>>> a_plus_b.value
6
>>> b.value = 10
>>> a_plus_b.value
15

>>> # Accessing attributes of a Value returns a Value-wrapped version of
>>> # that attribute, e.g.
>>> c = Value(complex(1, 2))
>>> r = c.real
>>> r.value
1
>>> i = c.imag
>>> i.value
2
>>> c.value = complex(10, 100)
>>> r.value
10
>>> i.value
100

>>> # You can also call (side-effect free) methods of Values to get a
>>> # Value-wrapped version of the result which updates when the Value
>>> # change:
>>> c2 = c.conjugate()
>>> c2.value
(10-100j)
>>> c.value = complex(123, 321)
>>> c2.value
(123-321)

As well as representing continuous values which change at defined points in
time yarp can also represent values which are defined only instantaneously,
for example an ephemeral sensor reading. For example:

>>> from yarp import Value, instantaneous_fn

>>> # Lets create an instantaneous value which occurs whenever a car drives
>>> # past a speed check. At the moment of measurement, the value has the
>>> # instantaneous value of the car's speed in MPH. For now, though, it
>>> # has no value.
>>> car_speed_mph = Value()

>>> # We live in a civilised world so lets convert that into KM/H. This
>>> # 'instantaneous_fn' decorator works just like the 'fn' one but returns
>>> # instantaneous values.
>>> @instantaneous_fn
... def mph_to_kph(mph):
... return mph * 1.6

>>> car_speed_kph = mph_to_kph(car_speed_mph)

>>> # Lets setup a callback to print a car's speed whenever it is measured
>>> def on_car_measured(speed_kph):
... print("A car passed at {} KM/H".format(speed_kph))
>>> car_speed_kph.on_value_changed(on_car_measured)
<function ...>

>>> # Now lets instantaneously set the value as if a car has just gone past
>>> # and watch as our callback is called with the speed in KM/H
>>> car_speed_mph.set_instantaneous_value(30)
A car passed at 48.0 KM/H

As in these examples, the intention is that most yarp-using code will be
based entirely on passing Values around between functions wrapped
with fn() and instantaneous_fn().

Creating impure Values

In general, yarp Values are intended to be passed between
simple, pure [https://en.wikipedia.org/wiki/Pure_function] functions wrapped by the fn() decorator. Specifically,
these functions don’t hold any state and the resulting Values
change when-and-only-when any input Value changes. This type of
function is very easy to write and reason about with yarp but is
fundamentally constrained. For example, it is not possible to implement
delay() using such a function since input :py;class:Value changes do
not immediately result in the Value changing. Simillarly, the
no_repeat() function also cannot be replicated since it doesn’t always
change its output Value when its input changes.

To get around this limitation it is necessary to manipulate Values ‘by hand’. Lets begin by seeing how no_repeat() is implemented.

The following pseudo code implementation goes the ‘obvious’ implementation for
a no-repeat value:

on source value changed:
 if source value != last source value:
 output value = source value
 last source value = source value

The actual Python implementation looks like:

>>> def no_repeat(source_value):
... last_value = source_value.value
...
... # Initially take on the source value
... output_value = Value(last_value)
...
... @source_value.on_value_changed
... def on_source_value_changed(new_value):
... nonlocal last_value
... if new_value != last_value:
... last_value = new_value
... # Copy to output whether continuous or instantaneous
... output_value._value = source_value.value
... output_value.set_instantaneous_value(new_value)
...
... return output_value

In this example we create function (or rather, a closure) called
on_source_value_changed and set it as the callback for the source
Value using Value.on_value_changed().

Note

This example uses the Python decorator syntax [https://www.python.org/dev/peps/pep-0318/] making the code read a little
more naturally, as in the pseudo-code version.

The last_value variable is accessed from the enclosing scope is used to
keep track of the last value received from the source. The nonlocal [https://docs.python.org/3/reference/simple_stmts.html#nonlocal] keyword is
used to gain access to it from our callback.

The last detail is the way the output Value is updated. If
source_value is a continuous function we could update the output using
either:

output_value.value = new_value

Or:

output_value.value = source_value.value

However, if source_value is an instantaneous value, we’d need to do use
Value.set_instantaneous_value():

output_value.set_instantaneous_value(new_value)

Since we’d like to make our output Value mimic the input regardless
of whether it is continuous or instantaneous, instead we use the following
two-step process:

output_value._value = source_value.value
output_value.set_instantaneous_value(new_value)

By setting _value we change Value.value without triggering any
callbacks registered with Value.on_value_changed(). We set this to the
continuous value of the source (which is :py:data`NoValue` if the source is
instantaneous). By calling Value.set_instantaneous_value() with the
just-received value from the source we cause the callback to occur in the
output Value.

You can try it out, first lets try a continuous value:

>>> # Create a value to de-repeat
>>> v = Value(123)
>>> nrv = no_repeat(v)
>>> nrv.on_value_changed(print)
<built-in function print>

>>> # Repeated values should not pass through
>>> v.value = 321
321
>>> v.value = 321
>>> v.value = 321
>>> v.value = 123
123

Next lets try an instantaneous value:

>>> # Create another instantaneous value to de-repeat
>>> iv = Value()
>>> nriv = no_repeat(iv)
>>> nriv.on_value_changed(print)
<built-in function print>

>>> nriv.value is NoValue
True

>>> iv.set_instantaneous_value(123)
123
>>> nriv.value is NoValue
True

>>> iv.set_instantaneous_value(123)
>>> nriv.value is NoValue
True

>>> iv.set_instantaneous_value(321)
321
>>> nriv.value is NoValue
True

yarp API

Value type

At the core of the yarp API is the Value type. This type is
defined below.

	
yarp.NoValue = NoValue

	A special value indicating that a yarp value has not been assigned a value.

	
class yarp.Value(initial_value=NoValue)

	A continuous or instantaneous value which can be read and set.

This base class defines the fundamental type in yarp: the ‘value’.

The actual data contained by this object should be regarded as immutable
with changes being made by replacing the Python object with a new one to
affect changes.

	
value

	A property holding the current continuous value held by this object. If
not yet set, or if this object represents only instantaneous values,
this will be NoValue.

Setting this property sets the (continuous) contents of this value
(raising the on_value_changed() callback afterwards).

To set the instantaneous value, see set_instantaneous_value().

To change the value without raising a callback, set the
_value attribute directly. This may be useful if you wish to
make this Value mimic another by, in a callback function, setting
_value in this Value directly from the other Value’s
value and calling set_instantaneous_value() with
the passed variable explicitly. You must always be sure to call
set_instantaneous_value() after changing _value.

	
set_instantaneous_value(new_value)

	Set the instantaneous value of this Value, calling the on_value_changed
callbacks with the passed value but not storing it in the
value property (which will remain unchanged).

	
on_value_changed(cb)

	Registers callback as a callback function to be called when this
value changes.

The callback function will be called with a single argument: the value
now held by this object. If the value is continuous, the value given as
the argument will match the Value.value property.
Otherwise, if this value is instantaneous, the value will not be
reflected in the Value.value property.

Note

There is no way to remove callbacks. For the moment this is an
intentional restriction: if this causes you difficulties this is a
good sign what you’re doing is ‘serious’ enough that yarp is
not for you.

This function returns the callback passed to it making it possible to
use it as a decorator if desired.

Aggregate Values

The yarp API provides a limited set of convenience functions which which
turn certain native Python data structures into Values which
update whenever the underlying Values do.

	
yarp.value_list(list_of_values)

	Returns a Value consisting of a fixed list of other
Values. The returned Value will change
whenever one of its members does.

	Parameters

	
	list_of_values: [:py:class:`Value`, …]

	A fixed list of Values. The value of this
object will be an array of the underlying values. Callbacks will be
raised whenever a value in the list changes.

It is not possible to modify the list or set the contained values
directly from this object.

For instantaneous list members, the instantaneous value will be
present in the version of this list passed to registered callbacks
but otherwise not retained. (Typically the instantaneous values
will be represented by NoValue in value or
in callbacks resulting from other Values changing.

	
yarp.value_tuple(tuple_of_values)

	A Value consisting of a tuple of other Values.

	Parameters

	
	tuple_of_values: (:py:class:`Value`, …)

	A fixed tuple of Values. The value of this
object will be a tuple of the underlying values. Callbacks will be
raised whenever a value in the tuple changes.

It is not possible to modify the tuple or set the contained values
directly from this object.

For instantaneous tuple members, the instantaneous value will be
present in the version of this tuple passed to registered callbacks
but otherwise not retained. (Typically the instantaneous values
will be represented by NoValue in value or
in callbacks resulting from other Values changing.

	
yarp.value_dict(dict_of_values)

	A Value consisting of a dictionary where the values (but not
keys) are Values.

	Parameters

	
	dict_of_values: {key: :py:class:`Value`, …}

	A fixed dictionary of Values. The value of this
object will be a dictionary of the underlying values. Callbacks will be
raised whenever a value in the dictionary changes.

It is not possible to modify the set of keys in the dictionary nor
directly change the values of its elements from this object.

For instantaneous dictionary members, the instantaneous value will
be present in the version of this dict passed to registered
callbacks but otherwise not retained. (Typically the instantaneous
values will be represented by NoValue in
value or in callbacks resulting from other
Values changing.

Value casting

The following low-level funcitons are provided for creating and casting
Value objects.

	
yarp.ensure_value(value)

	Ensure a variable is a Value object, wrapping it accordingly
if not.

	If already a Value, returns unmodified.

	If a list, tuple or dict, applies ensure_value() to all contained values and
returns a value_list, value_tuple or
value_dict respectively.

	If any other type, wraps the variable in a continous Value
with the initial value set to the defined value.

	
yarp.make_instantaneous(source_value)

	Make a persistent :py:class`Value` into an instantaneous one which ‘fires’
whenever the persistant value is changed.

	
yarp.make_persistent(source_value, initial_value=NoValue)

	Make an instantaneous Value into a persistant one, keeping the old value
between changes. Initially sets the Value to initial_value.

Value Operators

The Value class also supports many (but not all) of the native
Python operations, producing corresponding (continuous) Value
objects as results. These operations support the mixing of Value
objects and other suitable Python objects. The following operators are
supported:

	
	Arithmetic

	
	a + b

	a - b

	a * b

	a @ b

	a / b

	a // b

	a % b

	divmod(a, b)

	a ** b

	
	Bit-wise

	
	a << b

	a >> b

	a & b

	a | b

	a ^ b

	
	Unary

	
	-a

	+a

	abs(a)

	~a

	
	Comparison

	
	a < b

	a <= b

	a == b

	a != b

	a >= b

	a > b

	
	Container operators

	
	a[key]

	
	Numerical conversions

	
	complex(a)

	int(a)

	float(a)

	round(a)

	
	Python object/function usage

	
	a(...) will call the value as a function and return a
Value containing the result. This value will be updated by
re-calling the function whenever the Value changes. Like fn(),
arguments may be Value objects and these will be unwrapped
before the function is called and will also cause the function to be
re-evaluated whenever they change. Do not use this to call functions with
side effects.

	a.name equivalent to yarp.getattr(a, "name")

Unfortunately this list doesn’t include boolean operators (i.e. not,
and, or and bool). This is due to a limitation of the Python data
model which means that bool may only return an actual boolean value, not
some other type of object. As a workaround you can substitute:

	bool(a) for a == True (works in most cases)

	a and b for a & b (works for boolean values but produces numbers)

	a or b for a | b (works for boolean values but produces numbers)

For a similar reasons, the len and in operators are also not supported.

This list also doesn’t include mutating operators, for example a[key] = b.
This is because the Python objects within a Value are treated as
being immutable.

Finally, to reiterate, the result of these operators will always be continuous
Values. For instantaneous versions of these operators, see the
Python builtins section below.

Python builtins

The yarp API provides Value-compatible versions of a number of
Python builtins and functions from the standard library:

	
	Builtins

	
	bool(a)

	any(a)

	all(a)

	min(a)

	max(a)

	sum(a)

	map(a)

	sorted(a)

	str(a)

	repr(a)

	str_format(a, ...) (equivalent to a.format(...))

	oct(a)

	hex(a)

	zip(a)

	len(a)

	getattr(object, name[, default])

	Most non-mutating, non-underscore prefixed functions from the
operator [https://docs.python.org/3/library/operator.html#module-operator] module.

These wrappers produce continuous Values. Corresponding
versions prefixed with instantaneous_ are provided which produce
instantaneous Values.

Function wrappers

The primary mode of interaction with yarp Values is intended
to be via simple Python functions wrapped with fn() or
instantaneous_fn(). These wrappers are defined below.

	
yarp.fn(f)

	Decorator. Wraps a function so that it may be called with Value
objects and itself return a persistent Value.

Say a function is defined and wrapped with fn() like so:

>>> @yarp.fn
... def add(a, b):
... return a + b

The function can now be called with Value objects like so:

>>> a = yarp.Value(1)
>>> b = yarp.Value(2)
>>> c = add(a, b)

The returned value will itself be a Value object which will be
updated whenever any of the arguments change.

>>> c.value
3

The wrapped function doesn’t need to know anything about
Value objects: the wrapper unpacks the Values of
each argument before passing it on and automatically wrapps the return
value in a Value. (Non-Value arguments passed to
the function are automatically passed through without modification).

The wrapped function is called once immediately when it is called and then
again as required when its arguments change. The output Value
will be persistent.

See also: instantaneous_fn().

	
yarp.instantaneous_fn(f)

	Decorator. Like fn() but the function output will be wrapped as an
instantaneous Value.

The only other difference is that the function will not be called
immediately and instead will only be called later when its inputs change.

General Value manipulation

The following utility functions are defined which accept and return
Values.

	
yarp.replace_novalue(source_value, replacement_if_novalue=None)

	If the source_value is NoValue, return
replacement_if_novalue instead.

	Parameters

	
	source_valueValue

	An instantaneous or continuous Value.

	replacement_if_novaluePython object or Value

	Replacement value to use if source_value has the value
NoValue.

	Returns

	
	A continuous :py:class:`Value` which will be a copy of ``source_value`` if

	

	``source_value`` is not :py:data:`NoValue`, otherwise the value of

	

	``replacement_if_novalue`` is used instead.

	

	
yarp.window(source_value, num_values)

	Produce a moving window over a Value’s historical values.

This function treats the Value it is passed as a persistent Value, even if
it is instantaneous (since a window function doesn’t really have any
meaning for a instantaneous values).

The num_values argument may be a (persistent) Value or a constant
indicating the number of entries in the window. If this value later
reduced, the contents of the window will be truncated immediately. If it is
increaesd, any previously dropped values will not return. num_values
is always assumed to be an integer greater than zero and never NoValue.

	
yarp.no_repeat(source_value)

	Don’t pass on change callbacks if the Value hasn’t changed.

Works for both continuous and instantaneous Values.

	
yarp.filter(source_value, rule=NoValue)

	Filter change events.

The filter rule should be a function which takes the new value as an
argument and returns a boolean indicating if the value should be passed on
or not.

If the source value is persistent, the persistent value will remain
unchanged when a value change is not passed on.

If the filter rule is None, non-truthy values and NoValue will be
filtered out. If the filter rule is NoValue (the default) only
NoValue will be filtered out.

Temporal Value manipulation

The following utility functions are defined which accept and return
Values but may delay or filter changes. These all use
asyncio [https://docs.python.org/3/library/asyncio.html#module-asyncio] internally and require that a
asyncio.BaseEventLoop be running.

	
yarp.delay(source_value, delay_seconds, loop=None)

	Produce a time-delayed version of a Value.

Supports both instantaneous and continous Values. For
continuous Values, the initial value is set immediately.

The delay_seconds argument may be a constant or a Value giving the
number of seconds to delay value changes. If it is increased, previously
delayed values will be delayed further. If it is decreased, values which
should already have been output will be output rapidly one after another.

The loop argument should be an asyncio.BaseEventLoop in
which the delays will be scheduled. If None, the default loop is used.

	
yarp.time_window(source_value, duration, loop=None)

	Produce a moving window over a Value’s historical values
within a given time period.

This function treats the Value it is passed as a persistent
Value, even if it is instantaneous (since a window function
doesn’t really have any meaning for an instantaneous value).

The duration may be a constant or a (persistent) Value giving the
window duration as a number of seconds. The duration should be a number of
seconds greater than zero and never be NoValue. If the value is
reduced, previously inserted values will be expired earlier, possibly
immediately if they should already have expired. If the value is increased,
previously inserted values will have an increased timeout.

The loop argument should be an asyncio.BaseEventLoop in
which windowing will be scheduled. If None, the default loop is used.

	
yarp.rate_limit(source_value, min_interval=0.1, loop=None)

	Prevent changes occurring above a particular rate, dropping or
postponing changes if necessary.

The min_interval argument may be a constant or a Value. If
this value is decreased, currently delayed values will be output early (or
immediately if the value would have been output previously). If increased,
the current delay will be increased.

The loop argument should be an asyncio.BaseEventLoop in
which the delays will be scheduled. If None, the default loop is used.

File-backed Values

The following function can be used to make very persistent
Values

	
yarp.file_backed_value(filename, initial_value=NoValue)

	A persistent, file-backed value.

Upon creation, the value will be loaded from the specified filename.
Whenever the value is changed it will be rewritten to disk. Changes made to
the file while your program is running will be ignored.

If the file does not exist, it will be created and the value set to
the value given by initial_value.

The value must be pickleable.

Time Values

The following function can be used to get the (continously changing) date and
time:

	
yarp.now(interval=1.0, tz=None, loop=None)

	Returns a continuous Value containing a
datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] object holding the current time, refreshed
every interval seconds.

The interval argument may be a constant or a Value giving
the number of seconds to wait between updates. If the Value changes, the
time until the next update will be reset starting from that moment in time.

The tz argument is passed on to datetime.datetime.now(). This
must be a constant.

The loop argument should be an asyncio.BaseEventLoop in
which the delays will be scheduled. If None, the default loop is used.

 Python Module Index

 y

 		 	

 		
 y	

 	
 	
 yarp	

Index

 D
 | E
 | F
 | I
 | M
 | N
 | O
 | R
 | S
 | T
 | V
 | W
 | Y

D

 	
 	delay() (in module yarp)

E

 	
 	ensure_value() (in module yarp)

F

 	
 	file_backed_value() (in module yarp)

 	
 	filter() (in module yarp)

 	fn() (in module yarp)

I

 	
 	instantaneous_fn() (in module yarp)

M

 	
 	make_instantaneous() (in module yarp)

 	
 	make_persistent() (in module yarp)

N

 	
 	no_repeat() (in module yarp)

 	
 	NoValue (in module yarp)

 	now() (in module yarp)

O

 	
 	on_value_changed() (yarp.Value method)

R

 	
 	rate_limit() (in module yarp)

 	
 	replace_novalue() (in module yarp)

S

 	
 	set_instantaneous_value() (yarp.Value method)

T

 	
 	time_window() (in module yarp)

V

 	
 	Value (class in yarp)

 	value (yarp.Value attribute)

 	
 	value_dict() (in module yarp)

 	value_list() (in module yarp)

 	value_tuple() (in module yarp)

W

 	
 	window() (in module yarp)

Y

 	
 	yarp (module), [1], [2]

 nav.xhtml

 Table of Contents

 		
 yarp: Yet Another Reactive(-ish) Programming library for Python

 		
 Introduction

 		
 Creating impure Values

 		
 yarp API

 		
 Value type

 		
 Aggregate Values

 		
 Value casting

 		
 Value Operators

 		
 Python builtins

 		
 Function wrappers

 		
 General Value manipulation

 		
 Temporal Value manipulation

 		
 File-backed Values

 		
 Time Values

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

